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Recent studies have suggested that the cognitive process of the human brain is realized as probabilistic
inference and can be further modeled by probabilistic graphical models like Markov random fields.
Nevertheless, it remains unclear how probabilistic inference can be implemented by a network of
spiking neurons in the brain. Previous studies have tried to relate the inference equation of binary
Markov random fields to the dynamic equation of spiking neural networks through belief propagation
algorithm and reparameterization, but they are valid only for Markov random fields with limited
network structure. In this paper, we propose a spiking neural network model that can implement
inference of arbitrary binary Markov random fields. Specifically, we design a spiking recurrent neural
network and prove that its neuronal dynamics are mathematically equivalent to the inference process
of Markov random fields by adopting mean-field theory. Furthermore, our mean-field approach unifies
previous works. Theoretical analysis and experimental results, together with the application to image
denoising, demonstrate that our proposed spiking neural network can get comparable results to that
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1. Introduction

The human brain is able to process information in the pres-
ence of sensory uncertainties (Meyniel, Sigman, & Mainen, 2015).
For example, one can easily localize a bird in a tree via noisy
visual and auditory cues. Such processes can be understood
as probabilistic inference and further modeled by probabilistic
graphical models (Koller & Friedman, 2009; Wainwright, Jordan,
et al., 2008), including Bayesian networks and Markov Random
Fields (MRFs). With an increasing volume of behavioral and
physiological evidence (Doya, Ishii, Pouget, & Rao, 2007; Knill
& Richards, 1996; Ma & Jazayeri, 2014; Pouget, Drugowitsch, &
Kepecs, 2016) that humans do actually use probabilistic rules
in perception (Kersten, Mamassian, & Yuille, 2004; Shi, Church,
& Meck, 2013), sensorimotor control (Bays & Wolpert, 2007;
Kording & Wolpert, 2004) and cognition (Chater, Tenenbaum, &
Yuille, 2006; Jampani, Nowozin, Loper, & Gehler, 2015; Yuille
& Kersten, 2006), probabilistic brain is getting recognized by

* Corresponding author at: National Engineering Laboratory for Video Tech-
nology, Department of Computer Science and Technology, Peking University,
Beijing 100871, China.

** Corresponding author.
E-mail addresses: yuzfl2@pku.edu.cn (Z. Yu), yhtian@pku.edu.cn (Y. Tian).

https://doi.org/10.1016/j.neunet.2020.03.003
0893-6080/© 2020 Elsevier Ltd. All rights reserved.

neuroscientists (Pouget, Beck, Ma, & Latham, 2013). Nevertheless,
it remains unclear how the brain can perform inference. Or
more precisely, how a network of spiking neurons in the brain
can implement inference of probabilistic graphical models? This
problem is of great importance to both computer science and
brain science (Yu et al., 2020). If we know the neural algorithms
of probabilistic inference, it is possible to build a machine that
can perform probabilistic inference like the human brain.

In recent studies, many researchers have been devoted to
developing neural circuits that can represent and implement
inference of undirected probabilistic graphical models, namely
MRFs (Koller & Friedman, 2009), which is widely used in compu-
tational neuroscience (Fischl et al., 2002; Ming & Hu, 2010; Probst
et al.,, 2015; Vasta et al., 2016). The reason for focusing on MRFs
is that, for directed probabilistic graphical models, one can easily
convert them to MRFs via moralization (Jordan, Ghahramani,
Jaakkola, & Saul, 1999; Koller & Friedman, 2009).

Here we briefly review these previous studies. Litvak and
Ullman (2009) designed neural circuits to implement the opera-
tions of summation and multiplication respectively, and further
implemented probabilistic computation and inference of MRFs.
Steimer, Maass, and Douglas (2009) proposed using a population
of spiking neurons to collect messages and another population to
send messages, and then implemented the Belief Propagation (BP)
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Fig. 1. A square lattice pairwise Markov random field. The filled-in circles
represent the observed nodes y;, while the empty circles represent the “hidden”
nodes x;.

algorithm, a commonly used inference method in probabilistic
graphical models (Koller & Friedman, 2009; Wainwright et al.,
2008). All these studies require that each neuron and synapse
conduct complicated computation. However, one often observes
one basic principle of the neuronal system in the brain that a sin-
gle neuron or a group of neurons should work in a relatively sim-
ple style, while complex functions could be achieved when they
are wired together, i.e., collaborated in a network (Buonomano &
Maass, 2009; Liu & Buonomano, 2009).

In order to propose biologically more plausible neural net-
works to implement inference, Ott and Stoop (2007) established
a relationship between the inference equation of binary MRFs
and the dynamic equation of spiking neural networks through BP
algorithm and reparameterization. However, their model relied
on the specifically initialized messages and certain topological
structures of MRFs. Yu, Chen, and Dong (2017) went a further step
to relax the constraints on initialized messages, but still required
the special topological structure and potential function of MRFs.
Another important way is based on tree-based reparameteriza-
tion algorithm (Raju & Pitkow, 2016), which, however, is only
limited to the case of exponential family distributions.

In this paper, we use a mean-field approximation to treat
the inference process of MRFs as a time-continuous system of a
recurrent spiking neural network. We analytically prove a precise
equivalence between the inference equation of Markov random
fields and the dynamic equation of spiking recurrent neural net-
works. We show that the firing rates of neurons in the network
can encode the difference between the probabilities of two states.
In addition, we prove that the time course of neural firing rate
can implement marginal inference of arbitrary binary Markov
random fields. In this way, we can obtain the state of the neuron
by counting spikes from each neuron within a time window.
We further show that our mean-field approximation unifies the
previous approach based on BP algorithm and reparameteriza-
tion. Theoretical analysis and experimental results, together with
an application to the image denoising problem, show that our
proposed spiking neural network can get comparable results to
that of mean-field inference.

To summarize, our contributions include the following as-
pects:

e We propose a spiking neural network model that can imple-
ment inference of arbitrary binary Markov random fields.

e We prove that there exists a precise equivalence between
the dynamics of recurrent neural network and the inference
equation of a Markov random field.

e We show that the previous approach based on BP algorithm
and reparameterizations equals mean-field approximation.

e We show that our proposed spiking neural network can be
used to solve practical computer vision problems, like image
denoising.

The rest of the paper is organized as follows. In Section 2 we
briefly review MRFs and marginal inference, then we derive the
inference equation of MRFs based on mean-field approximation
and show how it is related to the dynamic equation of spiking
neural networks in Section 3. We show the simulation results in
Section 4 and conclude in Section 5.

2. Markov random fields and marginal inference

In this section, we briefly review MRFs and marginal inference.
MREFs is one typical undirected probabilistic graphical model that
is widely used in computational neuroscience. Thanks to their
ability to model soft contextual constraints between random
variables, MRFs provide a principled probabilistic framework to
model various vision problems (Chen & Tang, 2007; Dong et al.,
2015; Felzenszwalb & Huttenlocher, 2006) since the visual scene
modeling usually involves interactions between a subset of pixels
and scene components.

In a MRF, a joint distribution P({x}) = P(x1,X2,...,X,) is
defined on the graph, which can be factorized into a product of
potential functions according to the structure of the graph. For
the MRF in Fig. 1, P({x}) has the form:

1
P = 5 [ vtk xo [ Twatx v (1)
(i.j)eE iev

where E and V represent the set of edges and nodes in the
graph respectively, Wj(x;, x;) and Wi(x;, y;) denote the pairwise
and unary potential functions. Z is the partition function defined
asZ = ZXMZ AAAAA o ]_[(meE Wii(xi, %) [ Licy Wilxi, i). If one defines
Ji(xi %) = InWii(xi, %)) and hi(x;) = In¥i(x;, ;)" Eq. (1) can be
rewritten as:

1
P((xD) = S exp | D Jslxi %) + ) hilx) (2)

(i,j)eE ieV

Similar to the studies in Ott and Stoop (2007) and Yu et al.
(2017), we assume that J;(x;, x;) = Jyxx; and hi(x;) = hix;, in
which J; and h; are constants.

The inference problems of MRFs include Maximum a Posterior
(MAP) estimation and marginal inference. By MAP estimation,
we refer to the estimation of a maximum of posterior point
estimator. Conversely, marginal inference refers to inferring the
posterior or conditional distribution over the latent causes of
observations. In this paper, we only consider marginal infer-
ence. Specifically, we compute the marginal distribution of each
variable x;, that is:

pilxi) =Y P(x1, %, ..., Xp): (3)

X\X;

1 As the observed variable y; is fixed, one can subsume it into the definition
of hi(x;).
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Fig. 2. Recurrent neural network achieves similar inference results as the mean-field method. The mean relative errors rapidly converge in a few iterations. All MRFs
have nine nodes with different topologies as chain (A), single loop (B), grid (C) and fully connected graph (D). A; = A, = 0.1.

3. Neural implementation of marginal inference on binary
MRF

In this section, we will prove that there exists a precise
equivalence between the neuronal dynamics of recurrent neural
networks and mean-field inference of binary MRFs. We first
derive a differential equation that has the same fixed point
as the mean-field inference equation of MRFs, then we show
that this differential equation can be easily implemented by
the dynamic equation of recurrent neural networks. In the
end, we demonstrate that the previous work based on BP
algorithm and reparameterization equals the mean-field
approximation.

3.1. Converting mean-field inference into a differential equation

Similar to the studies in Ott and Stoop (2007) and Yu et al.
(2017), we only consider inference of binary MRFs in this paper,
which means the value of the variable x; can be 1 or —1 (x; = 1
or —1).

As exact inference of MRF is a NP-complete problem (Koller
& Friedman, 2009), approximate inference algorithms like varia-
tional methods are often used. The main principle of variational
methods is converting the inference problem to an optimization
problem:

rg&l}lKL(q(X) | p(x)). (4)

Here the target distribution p(x) is approximated by a simpler
distribution q(x), which belongs to a family of tractable dis-
tribution. KL(-) represents the Kullback-Leibler divergence be-
tween two distributions. In the mean-field method, q(x) is set

to be a fully factorized distribution, that is q(x) = [T, bi(x;). By
constraining in bi(x;) = 1 and differentiating KL (q(x) || p(x))
with respect to b;(x;), one can obtain the mean-field inference
equation:

bi*l(x) = aWilxi, yexp | D Y bi) Inwylxi, x) | 5)

JEN() X;

where « is a normalization constant to make in bi(x;) = 1 and
N(i) denotes the set of all neighboring nodes of node i. t denotes
the number of iterations, and bf(xf) represents the information
received by node i in the t th iteration, which is a function
with respect to the state of variable x;. When all the message
converge to the fixed point, the marginal probability p(x;) can
be approximated by the steady-state b{°(x;). According to the
definition In¥;(x;, x;) = Jij(xi,x;)) = Jyixix; and In¥i(x;, y;) =
hi(x;) = hix;, Eq. (5) can be rewritten as:

b (xi) = aexp [ DY bi(x;) - Jyxix + hixi | . (6)

JeN(i) x;

In order to convert Eq. (6) to a differential equation, we repa-
rameterize the message bl?(x,-) of variable x; according to:

nt = bi(x; = 1) — bl(x; = —1), (7)

where nf can be seen as the new message received by node i
in the tth iteration. Note that here the message n! is indepen-
dent of the state of variable x;. When n} converges to the fixed
point, it can approximate the probability p(x; = 1) — p(x; =
—1). Combining Egs. (6)-(7) and the condition b'(x; = 1) +
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b'(x; = —1) = 1 defined on binary MRF, one can get that:
it = b (% = 1) = b (% = —1)
— b‘( —1)+h

= o exp (Z Ji - ( = )
JeN()

— aexp Z —Jij - (bj(xj = 1) = bj(x; = =1)) = by
jeN(i) (8)
= tanh (Z]'J xJ =1) b;(xj =—-1)+h;
JEN(i)
= tanh (Z],]n; +h,<) :
j

jeN(i)

Note that the third equality of Eq. (8) holds as

—zexp(z S b 1)

JEN(I) Xj

Pt
J

jeN(i)

(% = 1) = bj(x; = —1) +hi) )

+ exp (Z —Jij - (b5 = 1) = bi(x; = —1)) — h,») .
JEN()

It is easy to prove that the following differential equation has
the same fixed point as Eq. (8).

dn;
) ’;Ef) = —n;(t) + tanh (JZ Jij - mi(t) + hi) , (10)

jeN(i)

where 1 is a time constant that determines the time needed for
the network to reach the fixed point.

3.2. Dynamic equation of spiking recurrent neural networks

Recurrent neural networks are composed of a population of
interconnected neurons, which have been widely used to model
cortical response properties in computational neuroscience (Rao,
2004, 2005). Here, we drive the firing-rate based equation of
spiking recurrent neural network based on two steps (Dayan &
Abbott, 2001): (1) Determining how the total synaptic input to
a neuron depends on the firing rate of its presynaptic afferents.
(2) Modeling how the firing rate of the postsynaptic neuron
depends on its total synaptic input.

First of all, considering the recurrent neural network consists
of N spiking neurons zy,z,..., zn, the input current to the
neuron z; at time t is [;(t), which includes the recurrent input of
spike sequence from other neurons and can be computed as:

N t
= Zw,-j/ K(t — 7)Si()de, (11)

where Sj(7) denotes the firing splke sequence of neuron z; defined
as a sum of Dirac § function Sj(t) = > 8(t — rf t‘f is firing
time of the f th spike of neuron z. wj denotes the synaptic
weight between neuron z; and z;, «(t) is the synaptic kernel that
describes the time course of the synaptic current in response
to a presynaptic spike arriving at time t. The most frequently
used form of synaptic kernel is an exponential kernel, that is,

k() = L exp (—+) with the membrane time constant .
Ts Ts

A

Neuron

B 100
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Fig. 3. Inference of a chain-structured MRF with spiking recurrent neural
network. (A) Spiking activity of the neurons in a recurrent neural network. (B)
Time course of firing rates of 9 neurons shown in (A).

In fact, the neural response function S;(t) could be replaced by
the firing rate rj(t) of neuron z; as rj(t) = ﬁ fth(Sj(r))dr with
(Sj(t)) denoting the trial-average neural response function, thus
Eq. (11) can be rewritten as:

t)_ZwUf —exp(

By taking the derivative of Ii(t) with respect to time t, one
obtain:

Sdlj(t) _—I,(t +Zw1]r] (13)

T) r()de. (12)

with t; denoting the time constant that describes the decay of the
synaptic conductance.

So far we can determine the input current to postsynaptic
neuron in terms of the firing rates of the presynaptic neurons. To
obtain the firing-rate model, we also need to determine the post-
synaptic firing rate with the current I;(t). For time-independent
inputs, the firing rate r;(t) of the postsynaptic neuron z; can be
expressed as ri(t) = F(Ii(t)), where F(x) denotes the neuronal
activation function. As the firing rate does not follow changes of
the total synaptic current instantaneously, the firing rate is often
modeled by a low-pass filtered version of the synaptic current:

dri(t)

T = —ri(t) + F(Ii(t)). (14)
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Fig. 4. Illustration of the robustness of our method with different settings of parameters on different topologies as chain (A), single loop (B), grid (C), fully connected
graph (D), 8-connected grid topology (E) and random connected topology with connection probability 0.5 for each edge (F).

Under the constraints of time-independent inputs, the steady
state of the postsynaptic current [;(t) is lim;_ o L(t) = ZJ’L wij
rj(t). If 7. > 1, we can make the approximation that Eq. (13)
comes to equilibrium quickly compared to Eq. (14). Consequently,
we can further replace I(t) by ZJN:1 wyri(t) in Eq. (14) and
obtain:

dri(t)
dt

. (15)

N
= —ri(t)+F [ Y wyri()
j=1

In recurrent neural networks, except for the input current
from recurrent neurons, there also exists an external input cur-
rent. Incorporating the external input current I?(t) to Eq. (15),
the firing rate of the recurrent neuron k is determined by:

N

= —ri(O)+F [ 170+ D wyri(t)
j=1

dri(t)
dt

(16)

r

3.3. Implementation of inference with neural network

Now one can relate the inference equation of MRFs (Eq. (10))
to the dynamics of recurrent neural networks (Eq. (16)). Obvi-
ously, Eq. (10) is equivalent to Eq. (16) if the following equations
hold:

T = 1, (17)

ri(t) = ni(t), (18)
Cif jeNG

Wij = { JJO 1ot]heers 0 ’ (19)

I#(t) = hy, (20)

F(x) = tanh(x). (21)

Egs. (17)-(21) mean that if the synaptic weights w;; and input
current If’“ (t) of a recurrent neural network encode the potential

functions J; and h; of a binary MRF respectively, the firing rate
ri(t) of neuron z; encodes the probability p(x; = 1) — p(x; = —1).
Moreover, the time course of neural firing rate in the recurrent
neural network can implement marginal inference of the MRF.
Thus, we can read out the inference result by counting spikes
from each neuron within a time window. Note that as the value
of n;(t) varies from —1 to 1, the firing rate ri(t) in Eq. (18)
could be negative, which is biologically implausible. As discussed
in Rao (2004), we can assume that the actual firing rate 7;(t) is
linearly related to the “firing rate” ri(t) obtained from Eq. (16),
that is, 7;(t) = ari(t) + b. Here a is a positive factor and b is a
rectification value that ensure i(t) to be positive. In conclusion,
we implement mean-field inference of binary MRFs with spiking
recurrent neural networks.

3.4. Relating mean-field inference to belief propagation

Here we will build the relationship between mean-field infer-
ence and BP, and show that the previous work based on BP and
reparameterization equals the mean-field inference.

Previous studies have tried to relate BP algorithm of binary
MREF to the dynamics of Hopfield Networks by deriving a new for-
mulation of belief propagation based on reparameterization (Ott
& Stoop, 2007; Yu et al., 2017):

puit! = tanh Z tanh™' | tanh(Jj)tanh
JeN()
X Z ng_)j + h +hi |, (22)
seN()\i

where ,uf“ represents the new message after reparameterization

of node i at the t + 1 th iteration, and u® = p(x; = 1) —
p(xi = —1). n_; is a function of the message m(_;(x;) in BP
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Fig. 5. Inference performance of recurrent neural networks on large-scale MRFs.

that is sent from node s to node j in the t th iteration. To be
specific, n!_; = tanh™" (m{_,(x; = 1) — m_ ;(x; = —1)). With the
assumptions that the number of neighboring nodes of each node
is large enough (N(j) > 1) and the potential function is small
(ij < Tand h; <« 1), Ott and Stoop (2007) and Yu et al. (2017)

proved that Eq. (22) can be simplified to:

= tanh( Z tanh(fy) - 1 + hy).
JEN(i)

t+1

M (23)

As Jij < 1, tanh(J;) = J;. Thus one can further simplify Eq. (23)
to:

t+1

7% (24)

=tanh( ) Ji - uf + hi).

JEN()
One can find that there exists a precise equivalence between
Egs. (24) and (8), which implies that the previous work based on
BP and reparameterization equals the mean-field approximation.
These results suggest that the Hopfield networks used in the
previous work actually implement mean-field inference, instead
of the BP algorithm. In addition, our current results explain the
experiments in Yu et al. (2017) where the inference result based
on Hopfield networks is not as accurate as that of BP when the
potential function is large (J > 1 and h; > 1). These errors
come from the difference between mean-field inference and the
BP algorithm.

4. Simulation experiments

To validate the proposed computational framework, we eval-
uate the performance of recurrent neural networks through sim-
ulation experiments. We firstly test the accuracy of the propose
method, and then prove that it is robust to different parameters.
At last, we scale up the proposed spiking neural network to solve
practical computer vision problems.

4.1. Testing on the accuracy of our method

In order to test the accuracy of the proposed method, we gen-
erated several MRFs with different graph topologies (chain, single
loop, grid and fully connected graph, see Fig. 2), and perform
inference of these MRFs with spiking recurrent neural network
and mean-field method respectively.

For a MRF with M nodes, we calculated marginal probabil-
ities for all these M nodes with mean-field method and the
corresponding recurrent neural network respectively. The mean
relative error § is defined as follows:

ZI xi = 1) = P*(x = 1)

PMF(x; = 1)
where PMF(x; 1) represents the marginal probabilities com-
puted with mean-field method, and P’"¥(x; = 1) represents the
result obtained by the corresponding recurrent neural network.

PMF

; (25)
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Fig. 2 illustrates how the relative errors rapidly convergence
with a few iterations. For each MRF, the potential functions J;
and h; are drawn from two uniform distributions on [0, A;] and
[—X2, A2] respectively. One can find that even for MRFs with
different topologies, the error decreases in a fast way with only
a few iterations. These results imply that the simulation of spik-
ing recurrent neural networks can get comparable results as an
analytical mean-field method.

To illustrate the inference mechanism of the spiking recurrent
neural network, Fig. 3A shows the spiking activity of all 9 neurons
in the recurrent neural network when performing inference of
a 9-node MRF with chain structure (Fig. 2A). Here the mapping
between actual firing rate 7;(t) and the “firing rate” r;(t) is 7i(t) =
50r;(t) 4+ 50. Thus the maximum firing rate of each neuron is
100 Hz. Fig. 3B shows the time course of the firing rate of each
neuron. One can see that the firing rate of each neuron converges
to a fixed value and then fluctuates around it.

4.2. Testing on the robustness of our method

The experimental results above indicate that the inference
model of recurrent neural networks can get accurate results as
mean-field inference for a given set of parameters of A; and A,
as 0.1. Here we make a concrete analysis of the robustness of our
model with different parameters. Fig. 4 shows the results where
A1 and X, are set to different combinations of 1 and 0.1, except
the setting that Ay = A, = 0.1 as shown in Fig. 2. We can see
that, in all cases, the errors converge to almost zero in a fast
manner. These results indicate that, different from the previous
works (Ott & Stoop, 2007; Yu et al., 2017) that only apply to MRFs
with special potential function (Jj < 1 and h; < 1), our method
is robust to different parameters and could implement inference
for arbitrary MRFs.

Then we investigate whether our framework can be scaled up
to large-scale MRFs with more nodes. Two examples are included
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Fig. 9. Image denoising with mean-field inference, recurrent neural networks, BP algorithm and BP-based neural networks. Here n denotes different noise levels.

here: a MRF with 25 nodes and 300 edges and a MRF with 100
nodes and 4950 edges. As shown in Fig. 5, the same conclusion
is obtained that the spiking recurrent neural networks can get
comparable results as the mean-field method.

4.3. Binary images denoising by recurrent neural networks

Here we investigate whether our spiking neural network can
be scaled up to solve more realistic tasks. We consider the task
of image denoising, that is, correcting an image that has been
corrupted. In the field of image processing, the researchers often
model image denoising problem by MRFs with grid-like struc-
tures (shown in Fig. 1) and then convert the denoising problem
to MAP estimation or marginal inference problem. Based on this,
we can also tackle this problem with recurrent neural networks
by computing the marginal probabilities of each pixel and then
infer whether this pixel is white or black in a binary setting.

The image denoising experiments are performed on the NIST
Special Database 19 (SD 19), which contains NIST’s entire corpus
of training materials for handwritten document and character
recognition. This dataset includes samples from 3600 writers,
consisting of 10 digits 0-9, 26 lower letters a-z and 26 upper
letters A-Z. Therefore we have totally 62 categories. During the
experiment, 100 images of each class are randomly selected as
dataset. All images used here are 128 x 128 pixels. In this
experiment, each image is modeled by a square lattice pair-
wise MRF (shown in Fig. 1), where the hidden variables {x} =
{x1, X2, ..., x,} represent the denoise image and observed vari-
ables {y} = {y1,¥2,...,Yyn} represent the observed noise image.
As observed pixel value is usually the same as the true pixel value,

so the unary potential h(x;) is set to 0.1 if the variable x; is the
same as the observation variable y; and —0.1 otherwise, that is,
h; = 0.1. Besides, as nearby pixel values are usually the same in
an image, the pairwise potential function J;(x;, x;) is set to 0.8 if
X; = X; and —0.8 otherwise (J; = 0.8). All the other settings in
this experiment are the same as in experiment 4.1 above.

Fig. 6 shows some examples of image denoising with mean-
field inference and the corresponding recurrent neural network.
Here the noise images are generated by randomly flipping the
pixel value with a probability of 5%.

We also quantitatively analyze these results by computing the
structural similarity index (SSIM) and the peak signal-to-noise
ratio (PSNR). As shown in Fig. 7, the SSIM of the original image,
denoised image by mean-field inference, and denoised image
by recurrent neural networks are 13.01 4 0.14, 29.19 4+ 1.97
and 29.19 + 1.97, respectively. The PSNR of the original image,
denoised image by mean-field inference, and denoised image by
recurrent neural networks are 0.1322 4 0.0207, 0.9905 £ 0.0047
and 0.9905 + 0.0047 respectively. All these results demonstrate
that recurrent neural networks can get the same denoising results
as mean-field inference. Fig. 8 illustrates how the mean relative
error between recurrent neural networks and mean-field infer-
ence varies over time. We can find the error converges to 0 with
a few iterations.

4.4, Comparison among different neural network based image de-
noising methods

In Section 3.4, we have proved that the previous approaches
based on BP and reparameterization (BP-based neural networks)
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legend, the reader is referred to the web version of this article.)

can be unified in our framework. In order to test this, we compare
our method with the BP algorithm and the BP-based neural net-
work model for the task of image denoising. In order to increase
the difficulty of inference, here we created a dataset of 100
images with 128 x 128 pixels by making randomly noisy images
and then smooth them to get true output values. Fig. 9 shows one
example of the randomly generated binary images. One can find
that there exists more separated space in these images compared
with the images in NIST SD 19. Thus it is more difficult to be
denoised.

To compare the performance of these algorithms, we add the
different levels of salt and pepper noise on the binary images,
and characterize the quality of the denoised images with the
criterion of the SSIM and PSNR. Fig. 9 illustrates one example
of image denoising with mean-field inference, recurrent neural
networks, BP algorithm (Koller & Friedman, 2009), and BP-based
neural networks (Yu et al, 2017). Fig. 10 compares the SSIM
and PSNR of different methods and noise levels. One can see
that the performance of recurrent neural networks (purple curve)
is the same as mean-field inference (red curve). Besides, one
can also find that the performance of BP-based neural networks
(green curve) is nearly the same as that of recurrent neural
networks (purple curve) and mean-field inference (red curve),
which demonstrates that the previous work equals mean-field
inference and can be unified in our framework. Note that there
exists a gap between BP-based neural networks (green curve) and
recurrent neural networks (purple curve) when the noise level is
larger than 0.3, which comes from the approximation between
Egs. (23) and (24).

5. Conclusion

In this paper, we prove that there exists a precise equivalence
between the dynamics of recurrent neural network and mean-
field inference of binary Markov random fields. We show that
if the synaptic weights and input current encode the potential
function of MRFs, the firing rates of neuron in recurrent neural
networks encode the difference between the probabilities for
two states. The time course of neuronal firing rate can imple-
ment marginal inference. Theoretical analysis and experiments on
MRFs with different topologies show that our neural network can
get the same performance as the mean-field method. Besides, we
also apply our proposed spiking framework to practical computer
vision problem, i.e., binary images denoising.

Differ from previous works based on BP algorithm and repa-
rameterization, where the potential functions of MRF should meet
some strict conditions, we design a spiking network that can

(For interpretation of the references to color in this figure

implement mean-field inference for arbitrary MRFs. What’s more,
we have demonstrated that our work unifies previous works.

The previous work of neural implementation of Bayesian in-
ference (Deneve, 2008; Rao, 2004; Yu, Chen, & Deng, 2018) with
recurrent neural networks focused on inference of hidden Markov
models. There also exist some studies (Guo, Yu, Deng, Hu, & Chen,
2017; Rao, 2005) that extended the networks to a multilayer
structure to perform hierarchical Bayesian inference. Different
from these works, we are focusing on how spiking neural net-
works are able to implement probabilistic inference of MRF. In
future work, we will try to extend our proposed framework to
tackle more advanced realistic problems, like recognition and
stereo matching.
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